Hyperspectral calibration database on cooked cassava to predict dry matter content

cg.authorship.typesCGIAR and advanced research institute
cg.creator.identifierMeghar Karima: 0000-0002-7732-9184
cg.creator.identifierThierry Tran: 0000-0002-9557-3340
cg.creator.identifierMaria A. Ospina: 0000-0001-9833-8592
cg.identifier.doihttps://doi.org/10.18167/dvn1/fp4sdb
cg.reviewStatusInternal Review
dc.contributor.authorMeghar, Karima
dc.contributor.authorTran, Thierry
dc.contributor.authorOspina Portilla, Maria Alejandra
dc.date.accessioned2023-10-25T15:02:53Zen
dc.date.available2023-10-25T15:02:53Zen
dc.identifier.urihttps://hdl.handle.net/10568/132448
dc.titleHyperspectral calibration database on cooked cassava to predict dry matter contenten
dcterms.abstractThis database contains 100 NIR average spectra of HSI images of cooked cassava root acquired in CIAT (Colombia), by using hyper spectral camera Specim FX17. Cassava roots were harvested from 07/03/2022 to 11/03/2022 in CIAT (Colombia) and analysed immediately after cooking. Twelve roots were used and each root is divided into six semicylinders. The semicylinders number 03,43,103 and 114 were used for HSI and DM measurements. Data was acquired using MEGHAR, K., DAVRIEUX, F., & ALAMU, E. (2020). SOP for Hyperspectral Imaging Analysis of Fresh RTB Crops. High-Throughput Phenotyping Protocols (HTPP), WP3. Montpellier, France: RTBfoods Project Report, 14 p. (2022-10-19)en
dcterms.accessRightsLimited Access
dcterms.bibliographicCitationMeghar, K.; Tran, T.; Ospina Portilla, M.A. (2023) Hyperspectral calibration database on cooked cassava to predict dry matter content. https://doi.org/10.18167/DVN1/FP4SDBen
dcterms.issued2023-02-06
dcterms.languageen
dcterms.licenseCC-BY-4.0
dcterms.subjectdry matteren
dcterms.subjectfood analysisen
dcterms.subjectinfrared spectrophotometryen
dcterms.typeDataset

Files

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: